Four New Alkaloids, Brevianamides O – R, from the Fungus Aspergillus versicolor

by Guo-You Li^a), Li-Mei Li^b), Tao Yang^a), Xiao-Zhen Chen^a), Dong-Mei Fang^a), and Guo-Lin Zhang^{*a})

 ^a) Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China (phone/fax: +86-28-85225401; e-mail: zhanggl@cib.ac.cn)
^b) Scientific Research Center, Chengdu Medical College, Chengdu 610083, P. R. China

Four new alkaloids, brevianamides O-R (1-4, resp.), were isolated from the AcOEt extract of the solid-state fermented rice culture of the fungus *Aspergillus versicolor*. Their structures were elucidated on the basis of spectroscopic analyses.

Introduction. – Aspergillus versicolor, a harmful fungus, is widely found in human and animal foodstuffs. Its secondary metabolites such as aflatoxins and related sterigmatocystins are carcinogenic [1]. Therefore, a variety of secondary metabolites of *A. versicolor* were extensively characterized, including xanthones such as sterigmatin [2] and sterigmatocystin [3], anthraquinones such as averantin [4], averufin [5], and versicolorone [6], a terpenoid, versiol [7], lactones [8], and chromones such as aspergillitine or aspergiones A-F [9]. Our previous study on the alkaloidal metabolites of the fungus *A. versicolor* led to the identification of five new diketopiperazine alkaloids [10]. The present study disclosed four new diketopiperazine alkaloids, brevianamides O-R (1–4, resp.), from the AcOEt extract of the solid-statefermented rice culture of this fungus. Here, the isolation and structure elucidation of compounds 1–4 are described.

Results and Discussion. – 1. *Structure Elucidation.* Compound **1** was isolated as yellow amorphous powder. The molecular formula $(C_{22}H_{23}N_3O_4)$ was determined from the *quasi*-molecular-ion peak at m/z 416.1561 ($[M + Na]^+$) in the HR-ESI-MS. The IR absorption band at $\tilde{\nu}_{max}$ 3331 cm⁻¹ suggested the presence of a OH group. The presence of amides could be deduced from the IR absorption bands at 3167, 1693, and 1658 cm⁻¹,

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

and the ¹³C-NMR signals at $\delta(C)$ 166.1 and 163.2 (*Table 1*). The NMR data and the UV maxima at λ_{max} 209 (4.10), 248 (3.78), and 339 (3.53) nm suggested that compound **1** was an analog of brevianamide L [10]. The comparison of the NMR data of **1** with those of brevianamide L suggested that one O-bearing C-atom resonates at $\delta(C)$ 84.5 in **1** instead of $\delta(C)$ 70.4 in brevianamide L. The OH group must be located at C(3) in view of the key HMBCs of H–C(17) and H–C(18) with $\delta(C)$ 84.5 (C(3)). The HMBC of H–C(16) with C(4), of H–C(10) with C(12), and of H–C(8) and H–C(11) with C(6) suggested the presence of a C=N and a C=C bond between C(4) and N(5), and C(6) and C(12), respectively. The structure of compound **1** was finally elucidated by the HSQC and HMBC experiments.

	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
C(1)		166.1		167.5
H-N(2)	6.45 (s)		6.50(s)	
C(3) or H - C(3)		84.5	2.66 (br. s)	58.4
C(4)		156.0		156.1
C(6)		160.6		163.0
H-C(8)	6.06 (d, J = 5.5)	143.5	6.05 (d, J = 5.6)	143.2
H-C(9)	5.64(t, J = 5.5)	117.2	5.64(t, J = 5.6)	117.2
H - C(10)	6.22 (dd, J = 11.2, 5.5)	128.7	6.18 (dd, J = 11.0, 5.6)	128.0
H-C(11)	6.80 (d, J = 11.2)	125.2	6.80 (d, J = 11.0)	125.5
C(12)		111.3		110.0
C(13)		163.2		160.9
H-C(15)	5.45 (dd, J = 5.6, 3.4)	57.2	5.47 $(t, J = 4.2)$	57.0
H-C(16)	2.36 - 2.40 (m)	44.2	2.27 - 2.30 (m)	36.6
CH ₂ (17)	0.83 - 0.86 (m)	24.6	1.01 - 1.05 (m)	23.1
Me(18)	0.93 (d, J = 7.2)	10.7	0.84 (d, J = 7.2)	15.7
Me(19)	0.79(t, J = 7.6)	11.6	0.76 (t, J = 7.6)	11.9
CH ₂ (20)	3.45 (dd, J = 14.9, 5.6),	37.0	3.38 - 3.41 (m)	37.1
	3.55 (dd, J = 14.9, 3.4)			
C(21)		134.4		134.3
H-C(22,26)	6.98 (d, J = 7.6)	130.0	6.94 (d, J = 7.2)	129.8
H-C(23,25)	7.32(t, J = 7.6)	129.3	7.24 (t, J = 7.2)	128.9
H-C(24)	7.33 $(t, J = 7.6)$	128.4	7.30 $(t, J = 7.2)$	128.1
^a) Recorded in CDC	¹ ₃ ; ¹ H: 600 MHz, ¹³ C: 150 MH	z; assignmen	ts based on HSQC and HMB	C.

Table 1. NMR Data of Compounds 1 and 2. δ in ppm, J in Hz^a)

In the NOESY experiment, the cross-signal between HO–C(3) at δ (H) 6.84 and H–C(22) or H–C(26) was observed (*Fig. 1*). The hydrolysis of compound **1** in 6N HCl (aq.) for 12 h at 100° afforded L-phenylalanine ($[\alpha]_D^{20} = -34.0 \ (c = 0.1, H_2O)$), which was determined by comparing with an authentic sample. Therefore, the absolute configurations of C(3) and C(15) were determined as (*R*) and (*S*), respectively. The configuration at C(16) could not be determined so far.

Compound **2** was obtained as yellow amorphous powder. The molecular formula $(C_{22}H_{23}N_3O_3)$ was inferred from the *quasi*-molecular-ion peak at m/z 400.1635 ($[M + Na]^+$) in the HR-ESI-MS. The NMR (*Table 1*) and UV data of compound **2** were

Fig. 1. Key HMBC $(H \rightarrow C)$ and NOESY (\leftrightarrow) correlations of 1 and 2

very similar to those of **1**. The molecular formula and IR spectrum suggested that, in compound **2**, there is no HO-C(3) as in compound **1**, which was confirmed by the HMBC of CH₂(17) and Me(18) with δ (C) 58.4 (C(3)) (*Fig. 1*). The structure of compound **2** was confirmed by the HSQC and HMBC experiments. The absolute configurations of both C(3) and C(15) were determined as (*S*) on the basis of the NOESY cross-peak between H-C(3) and H-C(22), and of L-phenylalanine obtained from the hydrolysis of compound **2** in the same way as in the case of **1**. Again, the configuration at C(16) could not be determined.

Compound **3** was obtained as a colorless racemic mixture with $[a]_D^{20} = 0.0$ (c = 0.10, acetone), and a *Cotton* effect in the CD spectrum was absent. The *quasi*-molecular-ion peak at m/z 388.1637 ($[M + Na]^+$) in the HR-ESI-MS gave the molecular formula $C_{21}H_{23}N_3O_3$. Signals for 21 H-atoms in ¹H-NMR and 21 signals in ¹³C-NMR spectra were observed (*Table 2*). The ¹H-NMR signals at $\delta(H)$ 5.09 (dd, J=11.9, 1.1, H-C(3'')), 5.12 (d, J=10.6, 1.1, H-C(3'')), 6.14 (dd, J=11.9, 10.6, H-C(2'')), and the HMBC of $\delta(H)$ 1.56 (s, Me(4'')) and 1.57 (s, Me(5'')) with $\delta(C)$ 39.2 (C(1'')) and 145.1 (C(2'')) indicated the presence of $-Me_2CCH=CH_2$ moiety. An *ortho*-substituted benzene ring was evident from the ¹H-NMR signals at $\delta(H)$ 7.43 and 7.37 (d, J=8.1, H-C(4'), H-C(7')), and 7.08 and 7.01 (t, J=8.1, H-C(6'), H-C(5')). The IR absorptions (1711, 1692 cm⁻¹) and ¹³C-NMR signals ($\delta(C)$ 164.7, 158.8) indicated two amido C=O groups. The above evidence revealed compound **3** as an analog of brevianamide K [10]. The key HMBC of H-N(2) and H-C(7) with $\delta(C)$ 87.2 (C(8a))

	3 ^b)		4 ^c)	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
C(1)		164.7		162.5
H-N(2)	7.99 (s)		7.46(s)	
C(3)		126.7		125.8
C(4)		158.8		158.7
$CH_{2}(6)$	3.65 - 3.69(m), 3.75 - 3.77(m)	44.7	3.72 - 3.76(m), 3.89 - 3.94(m)	45.3
$CH_{2}(7)$	$2.02-2.04 \ (m), \ 2.21-2.27 \ (m)^{d}$	19.4	2.00-2.04(m), 2.13-2.18(m)	19.2
$CH_2(8)$	$2.21-2.27 \ (m)^{d}$, $2.21-2.27 \ (m)^{d}$	36.0	2.07 - 2.12 (m), 2.47 - 2.50 (m)	34.6
C(8a)		87.2		91.7
H-N(1')	10.24(s)		8.32 (s)	
C(2')		144.2		143.9
C(3')		104.0		103.2
C(3a')		126.7		126.2
H-C(4')	7.43 $(d, J = 8.1)$	119.5	7.26 (d, J = 7.2)	118.8
H-C(5')	7.01 $(t, J = 8.1)$	119.7	7.14(t, J = 7.2)	121.1
H-C(6')	7.08 (t, J = 8.1)	121.2	7.19 $(t, J = 7.2)$	122.4
H-C(7')	7.37 $(d, J = 8.1)$	111.3	7.36(t, J = 7.2)	111.3
C(7a')		135.3		134.4
H-C(8')	7.13 (s)	111.1	7.29(s)	113.0
C(1'')		39.2		39.2
H-C(2")	6.14 (dd, J = 11.9, 10.6)	145.1	6.06 (dd, J = 17.3, 10.5)	144.2
CH ₂ (3")	5.09 (dd, J = 11.9, 1.1),	115.5	5.17 (dd, J = 17.3, 0.8),	113.4
	5.12 (dd, J = 10.6, 1.1)		$5.21 \ (dd, J = 10.5, 0.8)$	
Me(4")	1.56 (s)	27.0	1.52(s)	27.4
Me(5")	1.57 (s)	27.2	1.52 (s)	27.3
MeO			3.33 (s)	51.5

Table 2. NMR Data of Compounds 3 and 4. δ in ppm, J in Hz^a)

^a) Assignments based on HSQC and HMBC; ¹H: 600 MHz, ¹³C: 150 MHz. ^b) Recorded in CDCl₃. ^c) Recorded in (D_6)acetone. ^d) Signals overlapped.

Fig. 2. Key HMBC $(H \rightarrow C)$ correlations of 3 and 4

indicated the presence of a OH group at C(8a). The structure of compound **3** was finally elucidated by detailed analysis of the HSQC and HMQC spectra (*Fig. 2*).

Compound 4 was also obtained as a colorless racemic mixture. The molecular formula $C_{22}H_{25}N_3O_3$ was deduced from the HR-ESI-MS. The IR, UV, and NMR spectra of 4 were similar to those of 3, but compound 4 contains one more MeO group ($\delta(H)$)

3.33 (s, Me), $\delta(C)$ 51.5), which is located at C(8a) in view of the HMBC of $\delta(H)$ 3.33 with $\delta(C)$ 91.7 (C(8a)). The structure of compound **9** was finally determined on the basis of HSQC and HMQC experiments (*Fig. 2*).

2. *Biological Studies*. Compounds 1-4 were evaluated for their cytotoxic properties against human breast cancer (Bre04), human lung (Lu04), and human neuroma (N04) cell lines. They exhibited no cytotoxicity against these cell lines ($GI_{50} > 10 \ \mu g/ml$).

Experimental Part

General. All solvents including petroleum ether (PE; $60-90^{\circ}$) were distilled prior to use. Column chromatography (CC): silica gel (SiO₂, 200–300 mesh; *Qingdao Marine Chemical Factory*, Qingdao, P. R. China); *Lichroprep C*₁₈ reversed-phase (*RP-18*) SiO₂ (40–63 µm, *Phenomenex Co.*). TLC: SiO₂ *GF*₂₅₄ (10–40 µm; *Qingdao Marine Chemical Factory*, Qingdao, P. R. China). M.p.: *X*-6 precise meltingpoint apparatus (*Beijing Fukai Science and Technology Development Limited Company*). Optical rotations: *Perkin-Elmer 341* polarimeter. UV Spectra: *Perkin-Elmer Lambda 35* UV/VIS spectrometer; λ_{max} (log ε) in nm. IR Spectra: *Perkin-Elmer Spectrum One* FT-IR spectrometer, KBr pellets; in cm⁻¹. 1D- and 2D-NMR Spectra: *Bruker AM-600* spectrometer; δ in ppm rel. to Me₄Si (=0 ppm), *J* in Hz. ESI-and HR-ESI-MS: *BioTOF-Q* mass spectrometer; in *m/z* (rel. %).

Microorganism and Fermentation. A. versicolor (A. 3.3968) was obtained from Institute of Microbiology of the Chinese Academy of Sciences (CAS). It was maintained on potato dextrose agar slant (PDA) at 4° and was stocked in Chengdu Institute of Biology, Chinese Academy of Sciences. The seed culture medium was comprised of dextrose (20 g/l), yeast extract (1 g/l), KH₂PO₄ (3 g/l), MgSO₄· 7 H₂O (1.5 g/l), and potato extract prepared by extracting 200 g of potato with 1 l of boiling H₂O for 20 min. The pH of the medium was adjusted to 6.0 with 1M NaOH (aq.). The solid culture medium was comprised of rice and 0.3% peptone. The sterilization was carried out at 121° under 15 psi for 30 min.

The fresh mycelium grown on PDA slant at 28° for 3 d was inoculated into 500-ml flasks containing 100 ml of sterilized seed medium. Flasks with inoculated medium were placed in a rotary shaker at 28° and incubated at 180 rpm for 2 d. The seed culture was inoculated into the sterilized solid medium for further fermentation at 28° for 25 d.

Extraction and Isolation. The fermented solid medium (4 kg) was soaked with AcOEt (8 l × 1, 3 d) at r.t. The solvent was evaporated *in vacuo* to afford a residue (42.0 g). This residue was separated over a SiO₂ column (600 g, \emptyset 90 mm × 330 mm) eluted with PE/acetone (15 : 1, 10 : 1, 5 : 1, 3 : 1, 1 : 1, 0 : 1; each 3000 ml) to yield five fractions: A (18.6 g), B (5.1 g), C (4.3 g), D (6.0 g), and E (5.0 g). Fr. D was subjected to CC (SiO₂ (110 g, \emptyset 50 mm × 110 mm); CHCl₃/MeOH 30 : 1, 20 : 1, 10 : 1; each 1000 ml) to afford *Frs. DA* (0.80 g), *DB* (2.55 g), and *DC* (1.50 g). *Fr. DA* was subjected to CC (*RP-18* silica gel (22 mm × 260 mm); MeOH/H₂O 7:3; 1000 ml) to afford compound **2** (18 mg). *Fr. DB* was separated by CC (SiO₂ (145 g, \emptyset 44 mm × 185 mm); PE/AcOEt 2 : 1, 1 : 1; each 1000 ml) to give **3** (52 mg), **4** (45 mg), and **1** (12 mg) successively.

Brevianamide $O (=(8\$,11\mbox{R})-8-Benzyl-11-(butan-2-yl)-10,11-dihydro-11-hydroxy-6\mbox{H-oxepino}[2,3-d]pyrazino[1,2-a]pyrimidine-6,9(8\mbox{H})-dione; 1): Yellow amorphous powder. [<math>\alpha$] $_{D}^{20} = -125.5 (c = 0.10, acetone). UV (MeOH): 209 (4.10), 248 (3.78), 339 (3.53). IR (KBr): 3331, 3167, 3059, 2963, 2925, 1693, 1658, 1624, 1595, 1427, 1396, 1040, 743. ¹H- and ¹³C-NMR:$ *Table 1*. HR-ESI-MS (pos.): 416.1561 ([<math>M + Na]⁺, C₂₂H₂₃N₃NaO₄⁺; calc. 416.1581).

Brevianamide P (= (8\$,11\$)-8-Benzyl-11-(butan-2-yl)-10,11-dihydro-6H-oxepino[2,3-d]pyrazino[1,2-a]pyrimidine-6,9(8H)-dione; **2**): Yellow amorphous powder. $[\alpha]_{D}^{20} = -272.3$ (c = 0.13, acetone). UV (MeOH): 208 (4.04), 245 (3.68), 336 (3.49). IR (KBr): 3204, 2925, 2854, 1687, 1577, 1535, 1435, 1101, 747. ¹H- and ¹³C-NMR: *Table 1*. HR-ESI-MS (pos.): 400.1635 ($[M + Na]^+$, $C_{22}H_{23}N_3NaO_3^+$; calc. 400.1632).

Brevianamide Q (=(3Z)-8a-Hydroxy-3-{[2-(2-methylbut-3-en-2-yl)-IH-indol-3-yl]methylidene]hexahydropyrrolo[1,2-a]pyrazine-1,4-dione; **3**): Colorless crystals. M.p. 184–186°. [a]_D²⁰=0.0 (c = 0.10, acetone). UV (MeOH): 204 (4.42), 224 (4.57), 347 (4.20). IR (KBr): 3345, 3268, 2970, 2927, 1711, 1692, 1658, 1576, 1434, 1384, 764. ¹H- and ¹³C-NMR: *Table 2*. HR-ESI-MS (pos.): 388.1637 ($[M + Na]^+$, $C_{21}H_{23}N_3NaO_3^+$; calc. 388.1632).

Brevianamide R (=(3Z)-8a-Methoxy-3-{[2-(2-methylbut-3-en-2-yl)-IH-indol-3-yl]methylidene]hexahydropyrrolo[1,2-a]pyrazine-1,4-dione; **4**): Colorless crystals. M.p. 206–208°. [a]_D²⁰=0.0 (c=0.10, acetone). UV (MeOH): 203 (4.30), 224 (4.45), 350 (4.04). IR (KBr): 3328, 3166, 3058, 2964, 1693, 1658, 1624, 1600, 1427, 1396, 1040, 743. ¹H- and ¹³C-NMR: *Table 2.* HR-ESI-MS (pos.): 402.1802 ([M+Na]⁺, C₂₂H₂₅N₃NaO₃⁺; calc. 402.1788).

Cytotoxicity Assay. Cancer cell lines Bre04 (MDA-MB-231), Lu04 (NCI-H460), and N04 (SF-268) were obtained from the *American Type Culture Collection* (ATCC) and cultured according to the supplier's instruction. The cells were seeded into 96-well plates, incubated for 16 h at 37° , and treated with compounds **1–4** at different concentrations for 48 h. Taxol was used as positive control. The cytotoxic activities were examined by means of colorimetric chemosensitivity assay with SRB (sulforhodamine B). The GI_{50} value (the drug concentration required to inhibit the cell growth by 50%) was used as a parameter for cytotoxicity [11][12].

Financial support of this research project was provided by the *Knowledge Innovation Program of the Chinese Academy of Sciences* (KSCX2-YW-G-069).

REFERENCES

- [1] R. E. Minto, C. A. Townsend, Chem. Rev. 1997, 97, 2537.
- [2] K. Fukuyama, T. Tsukihara, Y. Katsube, T. Hamasaki, Y. Hatsuda, N. Tanaka, T. Ashida, M. Kakudo, Bull. Chem. Soc. Jpn. 1975, 48, 1639.
- [3] E. Bullock, J. C. Roberts, J. G. Underwood, J. Chem. Soc. 1962, 4179.
- [4] J. H. Birkinshaw, J. C. Roberts, P. Roffey, J. Chem. Soc. C 1966, 855.
- [5] J. S. E. Holker, S. A. Kagal, L. J. Mulheirn, P. M. Whiter, J. Chem. Soc., Chem. Commun. 1966, 24, 911b.
- [6] M. Berger-Deguee, Y. Berger, *Phytochemistry* **1982**, *21*, 1449.
- [7] K. Fukuyama, T. Tsukihara, Y. Kasube, T. Hamasaki, Y. Hatsuda, Tetrahedron Lett. 1976, 17, 189.
- [8] M. R. Carvalho, L. C. de Almeida Barbosa, J. H. de Queiróz, O. W. Howarth, *Tetrahedron Lett.* 2001, 42, 809.
- [9] W. Lin, G. Brauers, R. Ebel, V. Wray, A. Berg, Sudarsono, P. Proksch, J. Nat. Prod. 2003, 66, 57.
- [10] G.-Y. Li, T. Yang, Y.-G. Luo, X.-Z. Chen, D.-M. Fang, G.-L. Zhang, Org. Lett. 2009, 11, 3714.
- [11] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Visica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1107.
- [12] L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. Simon, S. Tosini, P. Skehan, D. A. Scudiero, A. Monks, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1113.

Received February 9, 2010